

6.5	for IITJEE & Medi	cal Preparation								
Date Planned ://_				Daily	Daily Tutorial Sheet-3			Expected Duration : 45 Min		
Actu	al Date	of Attempt :	_/_/_	JEE A	dvanced Aı	chive	Exc			
31.	Kolbe's	electrolysis o	of potassium s	succinate give	es CO ₂ and	at	anode.	\odot	(1993)	
32.	Give th	product.								
33.	When gas A is passed through dry KOH at low temperature, a deep red coloured compound B and a gas C are obtained. The gas A, on reaction with but-2-ene, followed by treatment with Zn/H_2O yields acetaldehyde. Identify A, B and C. (1994)									
34.	Write bromin		structure of	the stereo	oisomers for	med whe	n cis-2-b	utene is rea	(1995)	
35.	An organic compound $E(C_5H_8)$ on hydrogenation gives compound $F(C_5H_{12})$. Compound E on ozonolysis gives formaldehyde and 2-keto propanal. Deduce the structure of compound E . (1995)									
36.	An alkyl halide, X , of formula $C_6H_{13}Cl$ on treatment with potassium tertiary butoxide gives two isomeric alkenes Y and $Z(C_6H_{12})$. Both alkenes on hydrogenation give 2 , 3 -dimethyl butane. Predict the structures of X , Y and Z . (1996)									
37.	Give the structure of the major organic products obtained from 3-methyl-2-pentene under each of the following reaction conditions: (1996) (a) HBr in the presence of peroxide (b) Br_2/H_2O (c) $Hg(OAc)_2/H_2O$, $NaBH_4$									
38.	(CH ₃) ₃	CMgCl on rea	action with D ₂	O produces	:			\odot	(1997)	
39.	(A) When (A) (C)	cyclohexane	(B) (s poured on we is in 'boat' for the is in 'crown' is	rm	because :	CD ₃) ₃ CD clohexane		(CD ₃) ₃ COD form se than water	(1997)	
40.	1, 3-bu	ıtadiene with	bromine in m	olar ratio of 1	: 1 generate	predomina	antly	⊙	(1997)	
41.	The hydrocarbon A, adds one mole of hydrogen in the presence of a platinum catalyst to form n-hexane. When A is oxidized vigorously with $KMnO_4$, a single carboxylic acid, containing three carbon atoms, is isolated. Give the structure of A and explain. (1997)									
42.	Benzyl	chloride (C_6) SO_2Cl_2	H ₅ CH ₂ Cl) can	be prepared f SOCl ₂		by chlorina	ation with	NaOCl	(1998)	
VMC	JEE Ad	vanced (Arch	nive)	78	B			DTS-3 Hyd	rocarbons	